
GENERATING MULTIPLE VERSIONS OF QUESTIONNAIRES

Mark Pienchala
National Agricultural Statistics Service, Fairfax, USA

1. Challenges of versions of questionnaires

Any system that is to be considered for data collection and editing in
the National Agricultural Statistics Service (NASS) must be able to
handle versions of questionnaires. NASS is decentralized with
headquarters in Washington DC and 45 state offices where most of the
production work is conducted. For some surveys, there are potentially 45
versions of questionnaires that must be accommodated. The idea of
generating versions of interactive editing and interviewing instruments
by computer came from Wouter Keller of the Netherlands Central Bureau of
Statistics. This paper presents the results of preliminary work done in
NASS. It has been shown that a computer program can generate versions
of instruments easily. Computer generated instruments have not yet been
used in production.

2. Motivation for automated generation of versions

The Computer Assisted Survey Section in NASS has just been given a
mandate to produce interactive processing instruments for editing, data
entry, and data collection for all of NASS'S surveys. This mandate is
much expanded from just a few months ago when the section was called the
CATI section. The CATI section concentrated just on Computer Assisted
Telephone Interviewing for a subset of NASS surveys. With the expanded
mandate, and with only a small increase in personnel in that section,
NASS must re-evaluate its instrument production techniques. While it is
possible to manually program instruments for versions of surveys the
cost is very high. The cost must be measured in terms of both direct
costs and opportunity costs. Direct costs involve time needed to program
and maintain the versions of instruments.

First International Blaise Users Meeting 131



Generating multiple versions of questionnaires

Opportunity costs may overwhelm direct costs. These involve the imple-
mentation that is not carried out or is carried out on a delayed
schedule because production and maintenance of the first instruments is
so time consuming. By using an integrated system such as Blaise it is
possible to reduce costs by programming one instrument for editing and
interviewing. This represents a savings of about 50% over programming
one system for editing and one for interviewing. This improvement is not
good enough. It is also important to keep in mind the huge United States
deficit which is about 400 billion dollars. Increased financial pressure
upon NASS and other agencies is a certainty. The broader challenge will
be to produce the same (or better) product in the future with fewer
resources. By aggressive and intelligent use of technology this
challenge can be met.

3. Example of versions of questionnaires

The Quarterly Agricultural Survey (QAS) best illustrates the challenge
of multiple versions in NASS. Within each QAS questionnaire are
several standard sections such as crops, grain stocks, hogs, and
chickens. The crops sections of the December QAS versions offer the
most extreme example of the challenge. The crops sections in the
December quarter of the QAS will survey different crops in the various
states as demonstrated by the three fictitious and simplified lists
below:

STATE A

Corn
Soybeans
Potatoes
Sorghum

STATE B

Irrigated Corn
Non-Irrigated Corn
Irrigated Sorghum
Non- Irrigated Sorghum
Peanuts
Potatoes
Rice
Irrigated Soybeans
Non- Irrigated Soybeans
Cotton

STATE C

Corn
Soybeans
Alfalfa Hay
Sunflowers
Tobacco

132 First International Blaise Users Meeting



Generating multiple versions of questionnaires

Several aspects of the version challenge are apparent:
1. there are different crops in different states,
2. there are different approaches to surveying a crop, especially in

some states it is necessary to distinguish between irrigated and
non-irrigated crops while in other states no distinction is made,
and

3. the order of the crops differs from state to state.

Other aspects of the version challenge that are not as apparent include
differences in question text, units of production (e.g., pounds, tons,
or bushels), SAS variable names, and unique item codes that have to be
associated with each question.

Various items of information are gathered about each kind of crop. For
example for corn the items for each state above are:

CORN, STATES A & C CORN, STATE B

acres planted, irrigated acres planted
acres harvested for grain, irrigated acres harvested for grain
production of grain, irrigated production of grain
acres harvested for silage, irrigated acres harvested for silage
production of silage, irrigated production of silage
other corn acres. irrigated corn acres for other uses

non-irrigated acres planted
non-irrigated acres harvested for grain
non-irrigated production of grain
non-irrigated acres harvested for silage
non-irrigated production of silage
non-irrigated corn acres for other uses

4. Building upon similar structures

There are similar structures between and within crops that can be used
to simplify the task of generating versions. For example, the following
structure, as exemplified by the following ROUTE statement, can be
applied both to com and to sorghum as well as other crops.

First International Blaise Users Meeting 133



Generating multiple versions of questionnaires

ROUTE (consolidation of route statements from three blocks>

Planted; {irrigated, non-irrigated, or both}
If Planted > 0 then
Harvestd {nested grain block}
. If Harvestd > 0 then

Prodction {nested grain block}
endif;
Harvestd {nested silage block}
If Harvestd > 0 then
Prodction {nested silage block}

endif; >
endif; {planted}
OtherUse;

A simpler structure that can be applied to several crops such as
soybeans, potatoes, and tobacco is:

ROUTE {all one block}
Planted
If Planted > 0 then
Harvestd {one use of crop only}
If Harvestd > 0 then
Prodction

endif;
endif;

Edits in the CHECK and SIGNAL paragraphs have similar form between
crops and states, even if details differ. For example:

SIGNAL
((softlow < Prodction/Harvestd) and (Prodction/Harvestd < softhigh))

Notice that no matter what the crop (and sometimes even twice in the
same crop), the same questions names are used. This is deliberate as
this will make excellent use of blocks (and nested blocks) in Blaise and
also of its "dot notation" and significantly cut down on the coding and
maintenance of the instruments. Also note that the SIGNAL paragraph
has edit limits that are defined with variables, not hard-coded numbers.
This allows dynamic definition of edit limits between crops. The idea is
to build upon similarities between versions of questionnaires, not to
agonize over differences.

134 First International Blaise Users Meeting



Generating multiple versions of questionnaires

5. Breaking down the version challenge into manageable parts

The strategy used in generating versions of instruments is to separate
aspects of programming that change from crop to crop from those that do
not change from crop to crop. In Blaise this separation is made very
neatly. The things that do change from crop to crop appear mostly in the
QUEST paragraph, while the things that stay the same appear totally in
the ROUTE, SIGNAL, and CHECK paragraphs. Thus the problem is sim-
plified if a way can be found to apply the same ROUTE, SIGNAL, and
CHECK paragraphs to different QUEST paragraphs. Conceptually this
may be done in one of two ways:
1. create a generic QUEST paragraph that is dynamically redefined for

each crop, or
2. create a different text file for each crop's QUEST paragraph.
The first option is mostly but not totally possible in Blaise. It would
require many expensive text substitutions and an external file that
would hold the text. Also Blaise does not allow some parameters to be
dynamically defined such as question numbers (item codes in NASS) and
question labels. For these reasons and others, this demonstration has
been constructed using the second method. Examples of QUEST paragraphs
are as follows:

QUEST {for corn>
Planted "/100/ HOW many acres of SOYBEANS were planted for all
purposes?" "CSYB_PL" : 0..997;
Harvestd "/101/ How many acres of the (PLANTED acres for SOYBEANS
were harvested?" »CSYB_HV" : 0..997;
Prdction "/102/ what was the production of SOYBEANS in BUSHELS?"
"CSYBPROD" : 0..9999997;

QUEST {for tobacco>
Planted "/200/ How many acres of TOBACCO were planted?"
"CTOB_PL" : 0..99.7;
Harvestd "/20V How many acres of the SPLANTED acres for TOBACCO
were harvested?" "CTOB_HV" : 0..99.7;
Prdction "/202/ What was the production of TOBACCO in POUNDS?"
"CTOBPROD" : 0..9999997;

About the only thing that is the same between the two QUEST paragraphs
are the question names. The item codes, the SAS variable names, the
units of production, the valid values, and even some of the question

First International Blaise Users Meeting 135



Generating multiple versions of questionnaires

text differ. However, the same ROUTE, SIGNAL, and CHECK paragraphs
can be applied to both QUEST paragraphs. This is done by use of blocks
in Blaise and by use of INCLUDE statements as illustrated below:

BLOCK crn;
QUEST Cfor corn>
INCLUDE "RSCI.fle"; {holds ROUTE, SIGNAL, and CHECK paragraphs}

ENDBLOCK;
QUEST corn : cm;

BLOCK tob;
QUEST {for tobacco>
INCLUDE "RSCI.fle"; {holds ROUTE, SIGNAL, and CHECK paragraphs}

ENDBLOCK;
QUEST tobacco : tob;

The INCLUDE statement is used here to repeat the same code twice. The
reason that Blaise does not confuse questions between the two blocks is
because of the dot notation that Blaise uses. For example the names of
the planted acres questions defined above are CORN.PLANTED and
TOBACCO.PLANTED.

6. Customization of blocks

It remains to customize each block as regards edit limits (and perhaps a
few other things as well). This customization is done in the ROUTE
paragraph at the instrument level (highest level of organization) as
follows:

136 First International Blaise Users Meeting



Generating multiple versions of questionnaires

ROUTE {instrument or questionnaire level>
ID; {Identification block}
Land; {some land questions)

{compute edit limits for corn}
f

Compute soft low := 50; Compute softhigh := 150;
Compute hardlow := 0; Compute hardhigh := 300;

Corn; {call corn questions}

{compute edit limits for tobacco}
Compute soft low := 150; Compute softhigh := 450;
Compute hardlow := 0; Compute hardhigh := 800;

Tobacco; {call tobacco questions}
ENDQUEST.

In practice, the variable edit limits are calculated from an external
file as they change from state to state for the same crop. The code
above is a simplified extract of what one version of an instrument would
look like. It can be programmed by people but there is no reason that
major parts of it cannot be automatically generated. Remember that there
are potentially 45 versions of the questionnaire to produce. Manual
coding would be tedious, time-consuming, and subject to error. Even
though this method is better than current methods used with another
system in NASS, it can still be improved.

7. Specialization of tasks

The nice thing about the automated approach is that in separating the
QUEST paragraphs from the ROUTE, SIGNAL, and CHECK paragraphs,
different people can build and maintain them. For example, the QUEST
files can be the responsibility of secretarial and clerical staff
because they are simply text files of set and structured format. The
ROUTE, SIGNAL, and CHECK paragraphs can be built and maintained by
subject matter specialists.

First International Blaise Users Meeting 137



Generating multiple versions of questionnaires

8. Requirements for automatic generation of versions

Three major requirements for automatically generating versions of
instruments are a library of code, a parameter file of specifications,
and a program that generates the versions of instruments. The library
serves as a resource of coded segments that the generator program
assembles according to the parameter file of specifications.

9. Library of code

The concept of a library is very important. By breaking up the Blaise
coded segments as described there are potentially hundreds of small
files where before there were just several larger ones. They cannot all
be placed in one directory..They must be placed in a simple subdirectory
tree whose structure is readily readable and understandable to those who
must work with it. Also, the file names must conform to a naming con-
vention which is also understandable. The directory tree which makes up
the library is displayed:

BLIB CROP1 {1st quarter crops}
CROP2 {2nd quarter crops}
CROP3 {3rd quarter crops}
CROP4 CORN {4th quarter corn}

SORGHUM {4th quarter sorghum}
etc.

R_S_C {Route, Signal, Check paragraphs}
HOGS
STOCKS
etc.

BLIB stands for Blaise LIBrary and R_s_c for Route, Signal, and Check.
Within a subdirectory such as CORN there are potentially several files
of QUEST paragraphs, one for each way that corn may be surveyed across
the country in the December quarter. File names must describe (even if
cryptically) what they contain. The first part of the two part file name
describes the crop and the approach to surveying it. The extension of

138 First International Blaise Users Meeting



Generating multiple versions of questionnaires

the file name will be used to designate a file that contains minor
modifications to one of the general survey approaches if required in a
particular state. For example:

CORN1G
CORN1S
CORN1G.55

CORNIG holds a QUEST paragraph concerning approach 1 of surveying
corn for just the Grain questions. CORNIS contains similar questions
for Silage. These two files are in fact treated as the default (or
master) files for corn that would normally be used in all appropriate
states. However if state 55 (Wisconsin) needs different wording or range
of valid values (but not different question names, item codes, or SAS
variable names) then CORNIG is copied to CORN1G.55 and the latter
file is modified. The version generating program would then choose
CORN1G.55 over CORNIG when generating the version for state 55.

For each structure that is found in the QUEST paragraphs there must
exist a corresponding R_s_c file that sets the ROUTE, SIGNAL, and
CHECK paragraphs. For example, files CORNIG and SORGIG (corn and
sorghum respectively) have the same structure (but different details). A
file found in the R_s_c directory that would apply to both CORNIG and
SORGIG would have a descriptive name such as ROWIG.FLE which would
stand for "ROW crop 1 for Grain". The extension here has no special
meaning but serves as a convenient way for searching for certain kinds
of files in the library. While there are many QUEST files for crops
there are only several R_s_c files because relatively few structures
are needed to cover all the crops.

10. Parameter file of specifications

The parameter file(s) of specifications must contain pertinent informa-
tion for each state. Ideally there would be one file where each state's
specification would be contained on one line. The specification file can
be either an ASCII file or a Blaise file. The former might be generated
from the agency's specification system, the latter from a subsidiary

First International Blaise Users Meeting 139



Generating multiple versions of questionnaires

Blaise instrument especially designed for hand entry of specifications.
NASS'S current file of specifications (used for SAS editing and
summary) falls a little short of what is needed for the automatic
generation of Blaise instruments. Each state's specification must
contain a list of valid item codes (which is equivalent to stating which
crops are valid for that state), SAS variable names, the order in which
crops are to appear, and the state's ID number. It may be necessary to
have most of the information in an ASCII file and other information such
as order of crops designated in a subsidiary Blaise instrument. If a
subsidiary Blaise specification instrument is necessary then it would be
designed so that a clerk could fill in the proper information.

11. Generator program

The program that generates the versions from the library of code and the
parameter file need not be very complicated. It needs to be able to read
information from the parameter file and draw upon the code from the
library. The generator program can be written either in Manipula (a
Blaise file manipulation utility) or in a programming language such as
Turbo Pascal. All work so far has been done with Manipula. It is able to
read either ASCII or Blaise files directly and to write text files
(including DOS BAT files) based on the information in the parameter
file. The sequence of events is as follows:
- The generator program reads a line from the parameter file.
- Lines are written into a text file by the generator program. The

lines in the text file refer to code from the library.
- The Blaise program is built up from a standard.front part, the text

file of library references, and a standard ending pan.
- The Blaise program is syntax checked and compiled from DOS.
- The compiled program is copied into the proper holding directory.

The lines that are written into the text file are mostly INCLUDE and
QUEST statements. A portion of such a program is as follows:

140 First International Blaise Users Meeting



Generating multiple versions of questionnaires

INCLUDE '\blib\crop4\corn\corn1g1; {corn for grain questions>
INCLUDE '\blib\R_S_C\row1a.fle1; Croute and edits>
QUEST grain : firstuse; {end of first nested block}
INCLUDE '\blib\crop4\corn\corn1s1; {corn for silage questions}
INCLUDE '\blib\R_S_C\row1a.fle'; {route and edits}
QUEST silage :~secnduse; {end of second nested block}
INCLUDE '\blib\R_S_C\row1.fle1; {end of whole block}

These lines represent the code from the library that will ask about 10
questions, route them properly, and apply approximately 10 edits.

The person who writes the generator program does not have to be a
systems person but should have some facility with computers. The gener-
ator program must be written in a very robust way. It should have
capability to add new crops and new sections of the questionnaire
without alteration. In fact, once written, it should apply to all
quarters or periods of a -particular survey and run for several years
without maintenance. NASS does not want to trade a problem of
maintaining instruments to one of maintaining a generator program.

The generation of versions of instruments is done in batch, one version
after another. Best results are obtained with a powerful computer (486
processor or above) with enough RAM and extended memory to hold the
library of code, the Blaise system files, Turbo Pascal, and work space
for the syntax check and compilation. Probably 16 Mb would be
sufficient. Time needed to generate each version is approximately 1
minute. Computers with this configuration are now starting to appear on
desks in NASS. The only time the hard disk is used is in storing the
compiled instruments.

If problems are found after the versions of instruments are generated,
then repairs are not made to the instruments, but to the library of code
or to the generator program. After repairs are made there, appropriate
versions are regenerated.

First International Blaise Users Meeting 141



Generating multiple versions of questionnaires

12. Survey management

Survey management is standardized across state offices and across
versions by use of standard front part of the instruments that includes
a block of code for management purposes. This management block contains
survey control questions, many of them with the selector attribute.
Management tables in Abacus or Manipula are applied across versions of
instruments and even across different surveys. Each state produces the
same tables and accesses or moves forms (with the Blaise forms manager)
with the same selector questions. The only difference between the
versions of the instruments is the subject matter.

13. Instrument administration

There has been some question concerning the administration of many
different versions of instruments from headquarters. This need not be
more difficult than current practice and should even be easier given
proper management. The idea is to build the instruments correctly in the
first place and avoid having to repair them in mid-survey. Some survey
administration could be automated. For example, a computer program could
distribute instruments to the correct location. A database of
information about the instruments already exists in the parameter file
of specifications. This information can also be used to help administer
the survey. For example, if there is a problem with a block of code that
concerns only 4 states, then the database could be" used to designate
which 4 states are concerned. Repairs are posted only to the 4 states,
the other 41 states are not bothered. In the current system if there is
a repair to be made then all states must update their instruments, even
if it does not concern their survey program.

Testing different versions of an instrument is an issue. The question is
how much testing is needed. The key is not to wait until versions of
instruments are automatically generated before testing. The time to test
is before chunks of Blaise code are put in the library. The library
should consist only of tested code, so when these chunks are pulled into
an instrument they should be regarded as tested subroutines. However,

142 First International Blaise Users Meeting



Generating multiple versions of questionnaires

there are still things that might go wrong. For example, some of the
crops may not have been placed in a version of the instrument, or a few
edits that go across crops may not work. The Blaise setup generator will
help with some of this testing. It can produce reports of item codes and
SAS variable names (with NASS customized setups) for each version of
the instrument. These can be manually inspected, however a computer
comparison of the reports against the original specification file would
be preferred. The dictionary provided by Blaise as well as the technical
description will be very useful as well. The testing that remains should
be carried out according to a strict protocol and may be done by
clerical personnel. Inevitably the final testers will be the users in
the state offices as is done now. One point to keep in mind is that if
instruments are generated automatically then there is more time to test
them afterwards but less need to do so.

14. Multiple versions versus one massive program

Some people wonder why multiple versions of an instrument should be
generated. Why not produce one massive instrument that can handle all
situations and use the parameter file of specifications to determine
which questions to ask in which state? In fact this can be done. The
computer generation technique need not produce many versions of one
instrument. The approach can be used to produce one instrument that
invokes the right questions in the right state. However there are two
strong reasons for generating multiple versions. First is that Blaise is
a forms based system with two modes of operation. The interviewer should
not have to see many or any inappropriate questions in the forms
(bottom) part of the screen even if they are not invoked. It is possible
to use the NEWPAGE question in order to keep inappropriate questions
from enumerator sight, but this makes less efficient use of the form,
adding pages unnecessarily. The problem becomes worse in the editing
(CADI) mode where the routing is passively enforced, not dynamically
controlled. The data editor would have to deal with up to three times as
many pages, many of them unfilled, as would be necessary in a customized
instrument.

First International Blaise Users Meeting 143



Generating multiple versions of questionnaires

The second reason that individual versions are preferred relates to
unusual aspects of NASS'S survey population, United States farms. The
sampling universe is relatively small and getting smaller, and farm
operations can be very large and diversified. As a result some farms are
surveyed several times during the year for one survey or another. This
situation worsens every year. As several surveys are conducted at any
one time it is desirable to contact the farmer one time (within some
period of time) and to ask all appropriate questions for all appropriate
surveys in one session. Currently this means that the first survey is
administered in CATI but then the interviewer leaves CATI and
administers the rest of the questions on paper. For the second and
subsequent surveys the benefits of CATI are lost for that farmer and
the data must then be entered into the system causing more work. A
solution to the multi-survey problem is to construct instruments that
can handle multiple surveys. By customizing versions for each state, the
size of each instrument is kept manageably small allowing more modules
to be added for other surveys. A parameter file is used to control the
interview and invoke the correct surveys in the instrument. This method
should reduce respondent burden by asking certain questions only once.
For example, if the name and address information is verified for one
survey in the interview, then it will not be necessary to verify it for
other surveys in the same interview. The handling of the data after data
collection would be facilitated by the use of subfiles available in
Blaise. Each survey's data will be kept in its own set of subfiles. A
powerful feature of Blaise is that survey management can be carried out
at the subfile level in addition to the management at the form level.
The generation of MEGA-VERSIONS of interviewing instruments is a
straight forward extension of generation of versions of instruments as
covered in this paper. However there are many interesting ramifications
as.regards data handling and survey management. These will be the
subject of a future paper.

144 First International Blaise Users Meeting



Generating multiple versions of questionnaires

15. Improvements in Blaise

There are a few enhancements to the Blaise system that would help in the
generation of versions of instruments. These include the capability of
passing question numbers and question labels as parameters, allowing
question numbers to be used in tables, nesting of an INCLUDE within
another INCLUDE (two levels only would be sufficient), and a new kind
of question similar to NEWPAGE called NEWCOL. The NEWCOL
question would help with formatting the screen between the CATI/CAPI
mode and the CADI mode when the columnar format for questions is used.
It would start the next question at the top of the column. Currently it
is difficult to make the screen look as nice as possible in both modes.
None of these enhancements is critical to the success of this method of
generating instruments, they would just make life easier.

First International Blaise Users Meeting 145




